Applying One-vs-One and One-vs-All Classifiers in k-Nearest Neighbour Method and Support Vector Machines to an Otoneurological Multi-Class Problem
نویسندگان
چکیده
We studied how the splitting of a multi-class classification problem into multiple binary classification tasks, like One-vs-One (OVO) and One-vs-All (OVA), affects the predictive accuracy of disease classes. Classifiers were tested with an otoneurological data using 10-fold cross-validation 10 times with k-Nearest Neighbour (k-NN) method and Support Vector Machines (SVM). The results showed that the use of multiple binary classifiers improves the classification accuracies of disease classes compared to one multi-class classifier. In general, OVO classifiers worked out better with this data than OVA classifiers. Especially, the OVO with k-NN yielded the highest total classification accuracies.
منابع مشابه
Fault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملA comparative study of multi-classification methods for protein fold recognition
Fold recognition based on sequence-derived features is a complex multi-class classification problem. In the current study, we comparatively assess five different classification techniques, namely multilayer perceptron and probabilistic neural networks, nearest neighbour classifiers, multi-class support vector machines and classification trees for fold recognition on a reference set of proteins ...
متن کاملA comparative study of performance of K-nearest neighbors and support vector machines for classification of groundwater
The aim of this work is to examine the feasibilities of the support vector machines (SVMs) and K-nearest neighbor (K-NN) classifier methods for the classification of an aquifer in the Khuzestan Province, Iran. For this purpose, 17 groundwater quality variables including EC, TDS, turbidity, pH, total hardness, Ca, Mg, total alkalinity, sulfate, nitrate, nitrite, fluoride, phosphate, Fe, Mn, Cu, ...
متن کاملPredicting cardiac arrhythmia on ECG signal using an ensemble of optimal multicore support vector machines
The use of artificial intelligence in the process of diagnosing heart disease has been considered by researchers for many years. In this paper, an efficient method for selecting appropriate features extracted from electrocardiogram (ECG) signals, based on a genetic algorithm for use in an ensemble multi-kernel support vector machine classifiers, each of which is based on an optimized genetic al...
متن کاملFeature scaling in support vector data description
When in a classification problem only samples of one class are easily accessible, this problem is called a one-class classification problem. Many standard classifiers, like backpropagation neural networks, fail on this data. Some other classifiers, like k-means clustering or nearest neighbor classifier can be applied after some minor changes. In this paper we focus on the support vector data de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Studies in health technology and informatics
دوره 169 شماره
صفحات -
تاریخ انتشار 2011